Examples of how to moderate image content using the Omni API
This example shows how to moderate a single image. The image must be base64-encoded and include the appropriate MIME type prefix.
curl -X POST https://api.omnimoderate.com/v1/moderate \
-H "Content-Type: application/json" \
-H "X-API-Key: your_api_key_here" \
-d '{
"input": [
{ "type": "image", "base64": "..." }
]
}'
{
"id": "modr-123459",
"model": "text-moderation-latest",
"results": [
{
"flagged": false,
"categories": {
"hate": false,
"harassment": false,
"self-harm": false,
"sexual": false,
"violence": false
},
"category_scores": {
"hate": 0.0,
"harassment": 0.0,
"self-harm": 0.0,
"sexual": 0.0,
"violence": 0.0
}
}
],
"flagged": false,
"signature": "abcdef1234567893"
}
This example shows how to moderate an image with additional vision analysis. The analyze_images
parameter is set to true
to enable vision analysis.
curl -X POST https://api.omnimoderate.com/v1/moderate \
-H "Content-Type: application/json" \
-H "X-API-Key: your_api_key_here" \
-d '{
"input": [
{ "type": "image", "base64": "..." }
],
"analyze_images": true
}'
{
"id": "modr-123460",
"model": "text-moderation-latest",
"results": [
{
"flagged": false,
"categories": {
"hate": false,
"harassment": false,
"self-harm": false,
"sexual": false,
"violence": false
},
"category_scores": {
"hate": 0.0,
"harassment": 0.0,
"self-harm": 0.0,
"sexual": 0.0,
"violence": 0.0
}
}
],
"vision_analysis": [
{
"image_index": 0,
"analysis": "This image shows a plate of beautifully presented food in what appears to be a restaurant setting. The dish looks like a well-plated steak with garnishes and side dishes. The lighting is good, the food appears appetizing, and the image is of high quality. This is perfectly appropriate for a restaurant listing or review as it showcases the food offerings. VERDICT: APPROPRIATE",
"flagged": false
}
],
"flagged": false,
"signature": "abcdef1234567894"
}
This example shows how to moderate multiple images in a single request:
curl -X POST https://api.omnimoderate.com/v1/moderate \
-H "Content-Type: application/json" \
-H "X-API-Key: your_api_key_here" \
-d '{
"input": [
{ "type": "image", "base64": "..." },
{ "type": "image", "base64": "..." }
],
"analyze_images": true
}'
{
"id": "modr-123461",
"model": "text-moderation-latest",
"results": [
{
"flagged": false,
"categories": {
"hate": false,
"harassment": false,
"self-harm": false,
"sexual": false,
"violence": false
},
"category_scores": {
"hate": 0.0,
"harassment": 0.0,
"self-harm": 0.0,
"sexual": 0.0,
"violence": 0.0
}
},
{
"flagged": false,
"categories": {
"hate": false,
"harassment": false,
"self-harm": false,
"sexual": false,
"violence": false
},
"category_scores": {
"hate": 0.0,
"harassment": 0.0,
"self-harm": 0.0,
"sexual": 0.0,
"violence": 0.0
}
}
],
"vision_analysis": [
{
"image_index": 0,
"analysis": "This image shows a plate of beautifully presented food in what appears to be a restaurant setting. The dish looks like a well-plated steak with garnishes and side dishes. The lighting is good, the food appears appetizing, and the image is of high quality. This is perfectly appropriate for a restaurant listing or review as it showcases the food offerings. VERDICT: APPROPRIATE",
"flagged": false
},
{
"image_index": 1,
"analysis": "This image shows the interior of a restaurant with tables and chairs. The space appears clean, well-lit, and professionally designed. This is an appropriate image for a restaurant listing as it accurately represents the dining environment for potential customers. There are no inappropriate elements or overlays in the image. VERDICT: APPROPRIATE",
"flagged": false
}
],
"flagged": false,
"signature": "abcdef1234567895"
}
// Function to convert an image file to base64
function fileToBase64(file) {
return new Promise((resolve, reject) => {
const reader = new FileReader();
reader.readAsDataURL(file);
reader.onload = () => resolve(reader.result);
reader.onerror = error => reject(error);
});
}
async function moderateImages(apiKey, imageFiles, analyzeImages = false) {
// Convert all image files to base64
const base64Promises = imageFiles.map(file => fileToBase64(file));
const base64Images = await Promise.all(base64Promises);
const response = await fetch('https://api.omnimoderate.com/v1/moderate', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-API-Key': apiKey
},
body: JSON.stringify({
input: base64Images.map(base64 => ({ type: 'image', base64 })),
analyze_images: analyzeImages
})
});
if (!response.ok) {
const errorData = await response.json();
throw new Error(errorData.error?.message || 'Moderation request failed');
}
return await response.json();
}
// Example usage with file input
document.getElementById('imageForm').addEventListener('submit', async (e) => {
e.preventDefault();
const apiKey = 'your_api_key_here';
const fileInput = document.getElementById('imageInput');
const analyzeImages = document.getElementById('analyzeImages').checked;
try {
const result = await moderateImages(apiKey, Array.from(fileInput.files), analyzeImages);
console.log('Moderation result:', result);
console.log('Flagged:', result.flagged);
if (analyzeImages && result.vision_analysis) {
result.vision_analysis.forEach((analysis, index) => {
console.log(`Image ${index + 1} analysis: ${analysis.analysis}`);
console.log(`Image ${index + 1} flagged: ${analysis.flagged}`);
});
}
} catch (error) {
console.error('Error:', error.message);
}
});
import requests
import base64
from pathlib import Path
def encode_image_to_base64(image_path):
"""Convert an image file to base64 encoding with MIME type prefix"""
image_path = Path(image_path)
mime_type = f"image/{image_path.suffix[1:]}" # Remove the dot from extension
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
return f"data:{mime_type};base64,{encoded_string}"
def moderate_images(api_key, image_paths, analyze_images=False):
"""Moderate multiple images using the Omni API"""
url = "https://api.omnimoderate.com/v1/moderate"
headers = {
"Content-Type": "application/json",
"X-API-Key": api_key
}
# Convert all images to base64
base64_images = [encode_image_to_base64(path) for path in image_paths]
payload = {
"input": [{"type": "image", "base64": base64} for base64 in base64_images],
"analyze_images": analyze_images
}
response = requests.post(url, headers=headers, json=payload)
if response.status_code != 200:
error_data = response.json()
raise Exception(error_data.get("error", {}).get("message", "Moderation request failed"))
return response.json()
# Example usage
def example():
api_key = "your_api_key_here"
image_paths = ["path/to/image1.jpg", "path/to/image2.png"]
try:
# Moderate images with vision analysis
result = moderate_images(api_key, image_paths, analyze_images=True)
print(f"Moderation result: {result['flagged']}")
# Check individual results
for i, result_item in enumerate(result['results']):
print(f"Image {i + 1} flagged: {result_item['flagged']}")
# Check vision analysis
if 'vision_analysis' in result:
for analysis in result['vision_analysis']:
print(f"Image {analysis['image_index'] + 1} analysis: {analysis['analysis']}")
print(f"Image {analysis['image_index'] + 1} flagged: {analysis['flagged']}")
except Exception as e:
print(f"Error: {str(e)}")
if __name__ == "__main__":
example()